(0) Obligation:

JBC Problem based on JBC Program:
No human-readable program information known.

Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB8

(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 117 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load292(i41) → Cond_Load292(i41 > 0 && 0 = i41 % 2, i41)
Cond_Load292(TRUE, i41) → Load292(i41 / 2)
Load292(i41) → Cond_Load2921(i41 % 2 > 0 && i41 > 0, i41)
Cond_Load2921(TRUE, i41) → Load292(i41 + -1)
The set Q consists of the following terms:
Load292(x0)
Cond_Load292(TRUE, x0)
Cond_Load2921(TRUE, x0)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load292(i41) → Cond_Load292(i41 > 0 && 0 = i41 % 2, i41)
Cond_Load292(TRUE, i41) → Load292(i41 / 2)
Load292(i41) → Cond_Load2921(i41 % 2 > 0 && i41 > 0, i41)
Cond_Load2921(TRUE, i41) → Load292(i41 + -1)

The integer pair graph contains the following rules and edges:
(0): LOAD292(i41[0]) → COND_LOAD292(i41[0] > 0 && 0 = i41[0] % 2, i41[0])
(1): COND_LOAD292(TRUE, i41[1]) → LOAD292(i41[1] / 2)
(2): LOAD292(i41[2]) → COND_LOAD2921(i41[2] % 2 > 0 && i41[2] > 0, i41[2])
(3): COND_LOAD2921(TRUE, i41[3]) → LOAD292(i41[3] + -1)

(0) -> (1), if ((i41[0]* i41[1])∧(i41[0] > 0 && 0 = i41[0] % 2* TRUE))


(1) -> (0), if ((i41[1] / 2* i41[0]))


(1) -> (2), if ((i41[1] / 2* i41[2]))


(2) -> (3), if ((i41[2] % 2 > 0 && i41[2] > 0* TRUE)∧(i41[2]* i41[3]))


(3) -> (0), if ((i41[3] + -1* i41[0]))


(3) -> (2), if ((i41[3] + -1* i41[2]))



The set Q consists of the following terms:
Load292(x0)
Cond_Load292(TRUE, x0)
Cond_Load2921(TRUE, x0)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD292(i41[0]) → COND_LOAD292(i41[0] > 0 && 0 = i41[0] % 2, i41[0])
(1): COND_LOAD292(TRUE, i41[1]) → LOAD292(i41[1] / 2)
(2): LOAD292(i41[2]) → COND_LOAD2921(i41[2] % 2 > 0 && i41[2] > 0, i41[2])
(3): COND_LOAD2921(TRUE, i41[3]) → LOAD292(i41[3] + -1)

(0) -> (1), if ((i41[0]* i41[1])∧(i41[0] > 0 && 0 = i41[0] % 2* TRUE))


(1) -> (0), if ((i41[1] / 2* i41[0]))


(1) -> (2), if ((i41[1] / 2* i41[2]))


(2) -> (3), if ((i41[2] % 2 > 0 && i41[2] > 0* TRUE)∧(i41[2]* i41[3]))


(3) -> (0), if ((i41[3] + -1* i41[0]))


(3) -> (2), if ((i41[3] + -1* i41[2]))



The set Q consists of the following terms:
Load292(x0)
Cond_Load292(TRUE, x0)
Cond_Load2921(TRUE, x0)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD292(i41) → COND_LOAD292(&&(>(i41, 0), =(0, %(i41, 2))), i41) the following chains were created:
  • We consider the chain LOAD292(i41[0]) → COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0]), COND_LOAD292(TRUE, i41[1]) → LOAD292(/(i41[1], 2)) which results in the following constraint:

    (1)    (i41[0]=i41[1]&&(>(i41[0], 0), =(0, %(i41[0], 2)))=TRUELOAD292(i41[0])≥NonInfC∧LOAD292(i41[0])≥COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])∧(UIncreasing(COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i41[0], 0)=TRUE>=(0, %(i41[0], 2))=TRUE<=(0, %(i41[0], 2))=TRUELOAD292(i41[0])≥NonInfC∧LOAD292(i41[0])≥COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])∧(UIncreasing(COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i41[0] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i41[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i41[0] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i41[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i41[0] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i41[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i41[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i41[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (6) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (7)    (i41[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i41[0] ≥ 0∧[(-1)bso_15] ≥ 0)







For Pair COND_LOAD292(TRUE, i41) → LOAD292(/(i41, 2)) the following chains were created:
  • We consider the chain LOAD292(i41[0]) → COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0]), COND_LOAD292(TRUE, i41[1]) → LOAD292(/(i41[1], 2)) which results in the following constraint:

    (8)    (i41[0]=i41[1]&&(>(i41[0], 0), =(0, %(i41[0], 2)))=TRUECOND_LOAD292(TRUE, i41[1])≥NonInfC∧COND_LOAD292(TRUE, i41[1])≥LOAD292(/(i41[1], 2))∧(UIncreasing(LOAD292(/(i41[1], 2))), ≥))



    We simplified constraint (8) using rules (III), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(i41[0], 0)=TRUE>=(0, %(i41[0], 2))=TRUE<=(0, %(i41[0], 2))=TRUECOND_LOAD292(TRUE, i41[0])≥NonInfC∧COND_LOAD292(TRUE, i41[0])≥LOAD292(/(i41[0], 2))∧(UIncreasing(LOAD292(/(i41[1], 2))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (i41[0] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(LOAD292(/(i41[1], 2))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i41[0] ≥ 0∧[1 + (-1)bso_20] + i41[0] + [-1]max{i41[0], [-1]i41[0]} ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (i41[0] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(LOAD292(/(i41[1], 2))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i41[0] ≥ 0∧[1 + (-1)bso_20] + i41[0] + [-1]max{i41[0], [-1]i41[0]} ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (i41[0] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]i41[0] ≥ 0 ⇒ (UIncreasing(LOAD292(/(i41[1], 2))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i41[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (i41[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i41[0] ≥ 0 ⇒ (UIncreasing(LOAD292(/(i41[1], 2))), ≥)∧[(-1)Bound*bni_16] + [bni_16]i41[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (13) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (14)    (i41[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i41[0] ≥ 0 ⇒ (UIncreasing(LOAD292(/(i41[1], 2))), ≥)∧[(-1)Bound*bni_16] + [bni_16]i41[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)







For Pair LOAD292(i41) → COND_LOAD2921(&&(>(%(i41, 2), 0), >(i41, 0)), i41) the following chains were created:
  • We consider the chain LOAD292(i41[2]) → COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2]), COND_LOAD2921(TRUE, i41[3]) → LOAD292(+(i41[3], -1)) which results in the following constraint:

    (15)    (&&(>(%(i41[2], 2), 0), >(i41[2], 0))=TRUEi41[2]=i41[3]LOAD292(i41[2])≥NonInfC∧LOAD292(i41[2])≥COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])∧(UIncreasing(COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])), ≥))



    We simplified constraint (15) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (16)    (>(%(i41[2], 2), 0)=TRUE>(i41[2], 0)=TRUELOAD292(i41[2])≥NonInfC∧LOAD292(i41[2])≥COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])∧(UIncreasing(COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    (max{[2], [-2]} + [-1] ≥ 0∧i41[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]i41[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    (max{[2], [-2]} + [-1] ≥ 0∧i41[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]i41[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    (i41[2] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]i41[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (20)    (i41[2] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]i41[2] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (20) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (21)    (i41[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]i41[2] ≥ 0∧[(-1)bso_22] ≥ 0)







For Pair COND_LOAD2921(TRUE, i41) → LOAD292(+(i41, -1)) the following chains were created:
  • We consider the chain LOAD292(i41[2]) → COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2]), COND_LOAD2921(TRUE, i41[3]) → LOAD292(+(i41[3], -1)), LOAD292(i41[0]) → COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0]) which results in the following constraint:

    (22)    (&&(>(%(i41[2], 2), 0), >(i41[2], 0))=TRUEi41[2]=i41[3]+(i41[3], -1)=i41[0]COND_LOAD2921(TRUE, i41[3])≥NonInfC∧COND_LOAD2921(TRUE, i41[3])≥LOAD292(+(i41[3], -1))∧(UIncreasing(LOAD292(+(i41[3], -1))), ≥))



    We simplified constraint (22) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (23)    (>(%(i41[2], 2), 0)=TRUE>(i41[2], 0)=TRUECOND_LOAD2921(TRUE, i41[2])≥NonInfC∧COND_LOAD2921(TRUE, i41[2])≥LOAD292(+(i41[2], -1))∧(UIncreasing(LOAD292(+(i41[3], -1))), ≥))



    We simplified constraint (23) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (24)    (max{[2], [-2]} + [-1] ≥ 0∧i41[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (24) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (25)    (max{[2], [-2]} + [-1] ≥ 0∧i41[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (25) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (26)    (i41[2] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (26) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (27)    (i41[2] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (27) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (28)    (i41[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



  • We consider the chain LOAD292(i41[2]) → COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2]), COND_LOAD2921(TRUE, i41[3]) → LOAD292(+(i41[3], -1)), LOAD292(i41[2]) → COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2]) which results in the following constraint:

    (29)    (&&(>(%(i41[2], 2), 0), >(i41[2], 0))=TRUEi41[2]=i41[3]+(i41[3], -1)=i41[2]1COND_LOAD2921(TRUE, i41[3])≥NonInfC∧COND_LOAD2921(TRUE, i41[3])≥LOAD292(+(i41[3], -1))∧(UIncreasing(LOAD292(+(i41[3], -1))), ≥))



    We simplified constraint (29) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (30)    (>(%(i41[2], 2), 0)=TRUE>(i41[2], 0)=TRUECOND_LOAD2921(TRUE, i41[2])≥NonInfC∧COND_LOAD2921(TRUE, i41[2])≥LOAD292(+(i41[2], -1))∧(UIncreasing(LOAD292(+(i41[3], -1))), ≥))



    We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (31)    (max{[2], [-2]} + [-1] ≥ 0∧i41[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (32)    (max{[2], [-2]} + [-1] ≥ 0∧i41[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (33)    (i41[2] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (i41[2] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (34) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (35)    (i41[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD292(i41) → COND_LOAD292(&&(>(i41, 0), =(0, %(i41, 2))), i41)
    • (i41[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i41[0] ≥ 0∧[(-1)bso_15] ≥ 0)

  • COND_LOAD292(TRUE, i41) → LOAD292(/(i41, 2))
    • (i41[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i41[0] ≥ 0 ⇒ (UIncreasing(LOAD292(/(i41[1], 2))), ≥)∧[(-1)Bound*bni_16] + [bni_16]i41[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)

  • LOAD292(i41) → COND_LOAD2921(&&(>(%(i41, 2), 0), >(i41, 0)), i41)
    • (i41[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])), ≥)∧[(-1)Bound*bni_21] + [bni_21]i41[2] ≥ 0∧[(-1)bso_22] ≥ 0)

  • COND_LOAD2921(TRUE, i41) → LOAD292(+(i41, -1))
    • (i41[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
    • (i41[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD292(+(i41[3], -1))), ≥)∧[(-1)Bound*bni_23] + [bni_23]i41[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD292(x1)) = [-1] + x1   
POL(COND_LOAD292(x1, x2)) = [-1] + x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(=(x1, x2)) = [-1]   
POL(2) = [2]   
POL(COND_LOAD2921(x1, x2)) = [-1] + x2   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}   
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}   
POL(/(x1, 2)1 @ {LOAD292_1/0}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

COND_LOAD292(TRUE, i41[1]) → LOAD292(/(i41[1], 2))
COND_LOAD2921(TRUE, i41[3]) → LOAD292(+(i41[3], -1))

The following pairs are in Pbound:

LOAD292(i41[0]) → COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])
COND_LOAD292(TRUE, i41[1]) → LOAD292(/(i41[1], 2))
LOAD292(i41[2]) → COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])
COND_LOAD2921(TRUE, i41[3]) → LOAD292(+(i41[3], -1))

The following pairs are in P:

LOAD292(i41[0]) → COND_LOAD292(&&(>(i41[0], 0), =(0, %(i41[0], 2))), i41[0])
LOAD292(i41[2]) → COND_LOAD2921(&&(>(%(i41[2], 2), 0), >(i41[2], 0)), i41[2])

At least the following rules have been oriented under context sensitive arithmetic replacement:

FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, FALSE)1
/1

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD292(i41[0]) → COND_LOAD292(i41[0] > 0 && 0 = i41[0] % 2, i41[0])
(2): LOAD292(i41[2]) → COND_LOAD2921(i41[2] % 2 > 0 && i41[2] > 0, i41[2])


The set Q consists of the following terms:
Load292(x0)
Cond_Load292(TRUE, x0)
Cond_Load2921(TRUE, x0)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load292(x0)
Cond_Load292(TRUE, x0)
Cond_Load2921(TRUE, x0)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(16) TRUE